\qquad

PB PAGEZ EXAMINATION

Private Mock Examinations For BECE Candidates

AUGUST 2021

MATHEMATICS $\mathbf{2}$ \& 1
2 Hours

Al/ answers must be provided on clean sheet of papers (Answer booklet).

Write your name and index number on the sheets.

This booklet consists of two papers. Answer Paper 2 which comes first in your answer booklet and Paper 1 on your Objective Answer Sheet. Paper 2 will last for 1 Hour after which the answer booklet will be collected. Do not start Paper 1 until you are told to do so. Paper 1 will last $\mathbf{1}$ hour.

The use of calculators is not allowed.

Answer all questions in your answer booklet.

MORE MOCK QUESTIONS @

https://www.pbpaqez.com/mock/

PAPER 2
Essay-1 Hour
[60 marks]

Answer four questions only from this section. All working must be clearly shown. The use of calculators is not allowed. Marks will not be awarded for correct answers without corresponding working.

All questions carry equal marks.

1. (a) Factorize: $(m+n)(2 x-y)-x(m+n)$
(b) A and B are subsets of a universal set
$\mathrm{U}=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18\}$
Such that $A=\{$ even numbers $\}$ and $B=\{$ multiples of 3$\}$
(i) List the elements of the sets $\mathrm{A}, \mathrm{B},(\mathrm{A} \cap \mathrm{B}),(\mathrm{AUB})$ and $(\mathrm{AUB})^{\prime}$
(ii) Illustrate the information in (i) on a Venn diagram
(c) Find the values of x and y in the vector equation

$$
\binom{5}{3}+2\binom{x}{y}-\binom{1}{-7}=0
$$

2. (a) Find the sum of $2,483.65,701.532$ and 102.7 , giving your answer to one decimal place.

(b) In the quadrilateral ABCD above, $|\mathrm{AB}|=3 \mathrm{~cm},|\mathrm{BC}|=4 \mathrm{~cm},|\mathrm{CD}|=12 \mathrm{~cm}$ and angle $\mathrm{ABC}=$ 90°. Calculate:
(i) the perimeter of ABCD
(ii) the area of ABCD
3. (a) Evaluate: $\frac{2^{7} \times 3^{4} \times 5^{3}}{2^{3} \times 3^{2} \times 5^{2}}$, leaving your answer in standard form.
(b) Kwame rode a bicycle for a distance of $x \mathrm{~km}$ and walked for another $1 / 2$ hour at a rate of 6 $\mathrm{km} / \mathrm{hour}$. If Kwame covered a total distance of 10 km , find the distance x he covered by bicycle.
(c) A rectangular tank of length 22 cm , width 9 cm and height 16 cm is filled with water.

The water is poured into a cylindrical container of radius 6 cm .
Calculate the :
(i) volume of the rectangular tank
(ii) depth of water in the cylindrical container. [Take $\pi={ }^{22} / 7$]
4. (a) A box has length 8.0 cm , width 5.0 cm and height 10.0 cm . Find the:
(i) total surface area of the box
(ii) the volume of the box.
(b) (i) Using a scale of 2 cm to 1 unit on both axes, draw two perpendicular axes Ox and Oy on a graph sheet.
(ii) On the same graph sheet mark the x-axis from -5 to 5 and the y-axis from -6 to 6
(iii) Plot and join the points $\mathrm{A}(0,3), \mathrm{B}(2,3), \mathrm{C}(4,5)$ to form triangle ABC .
(iv) Draw the image $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ of triangle ABC under a translation by the vector $\binom{-1}{-1}$
(v) Draw the image $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$ of triangle ABC under a reflection in the x - axis
5. (a) Using a ruler and a pair of compass only;
(i) construct triangle $P Q R$ such that $\overline{|P R|}=8 \mathrm{~cm}, \overline{|P Q|}=6 \mathrm{~cm}$ and $\overline{|Q R|}=5 \mathrm{~cm}$;
(ii) construct the perpendicular bisector of $\overline{\mathrm{PR}}$ and label it ℓ_{1};
(iii) construct the perpendicular bisector of $\overline{\mathrm{QR}}$ and label it ℓ_{2};
(iv) Label the point of intersection of ℓ_{1} and ℓ_{2} as N ;
(v) With N as centre and radius equal to | $\mathrm{PN} \mid$, draw a circle.
(b) (i) Measure the radius of the circle.
(ii) Calculate the circumference of the circle, correct to 3 significant figures. [Take $\pi=3.14]$
6. (a) Factorize completely $6 x y-3 y+4 x-2$
(b)

The diagram shows a ladder AB which leans against a vertical wall PQ at B .
If $|\mathrm{PB}|$ is 8 m , and the other end of the ladder is 6 m away from the foot of the wall (at P), find the length of the ladder ($|\mathrm{AB}|$)
(c) Kojo had 1800 bags of rice in stock for sale. In January, he sold $2 / 3$ of it.

In February, he sold $3 / 4$ of what was left.
(i) What fraction of the stock of rice did he sell
(α) in February?
(β) in January and February?
(ii) How many bags of rice were left unsold, by the end of February?

DO NOT TURN OVER

THIS PAGE

UNTIL YOU ARE TOLD TO DO SO.

PAPER 1

1 HOUR

OBJECTIVE TEST

Write your name and index number in ink in the spaces provided above

1. Use 2B pencil throughout.
2. On the pre-printed answer sheet, check that the following details are correctly printed:

Your surname followed by your other names, the subject Name, your Index Number, Centre Number and the Paper Code.
3. In the boxes marked Candidate Name, Centre Number and Paper code, reshade each of the shaded Spaces.

MATHEMATICS 2

OBJECTIVE TEST
1 HOUR

1. If set \mathbf{N} is a subset of set \mathbf{M}, then
A. sets \mathbf{M} and \mathbf{N} have the same number of elements
B. some members of set \mathbf{N} can be found in set M
C. no member of set \mathbf{N} is in set \mathbf{M}
D. all members of set \mathbf{N} are in set \mathbf{M}

The Venn diagram shows the number of pupils who offer Mathematics (M) and / or English in a class.

Use this information to answer Questions 2 and 3.
2. How many pupils offer Mathematics?
A. 10
B. 18
C. 25
D. 28
3. How many pupils offer only one subject?
A. 3
B. 7
C. 18
D. 21
4. Simplify: 12-7-(-5)
A. -10
B. -2
C. 0
D. 10
5. Express 72 as a product of its prime factors
A. 2×3^{3}
B. $2^{2} \times 3^{3}$
C. $2^{3} \times 3$
D. $2^{3} \times 3^{2}$
6. Find the smallest number which is divisible by 16 and 20?
A. 40
B. 80
C. 120
D. 160
7. Convert $243_{\text {five }}$ to a base ten numeral.
A. 40
B. 43
C. 45
D. 73
8. A pineapple which was bought for $\mathrm{GH} \varnothing$ 1.00 was sold at $\mathrm{GH} \notin 1.30$. Calculate the profit percent.
A. 10%
B. 20%
C. 23%
D. 30%
9. Simplify $35 x^{5} y^{3} \div 7 x y^{2}$
A. $5 x^{4} y$
B. $5 x^{4} y^{5}$
C. $5 x^{6} y$
D. $5 x^{6} y^{5}$
10. Two bells P and Q ring at intervals of 3 hours and 4 hours, respectively. After how many hours will the two bells first ring simultaneously (at the same time)?
A. 6 hours
B. 8 hours
C. 12 hours
D. 24 hours
11. A boy scores $\frac{17}{25}$ in a French test.

Express his score as a percentage.
A. 17%
B. 34%
C. 68%
D. 85%
12. Arrange the following fractions in ascending order of magnitude
$\frac{2}{5}, \frac{5}{12}$ and $\frac{3}{4}$,
A. $\frac{2}{5}, \frac{3}{4}, \frac{5}{12}$
B. $\frac{2}{5}, \frac{5}{12}, \frac{3}{4}$
C. $\frac{5}{12}, \frac{2}{5}, \frac{3}{4}$
D. $\frac{3}{4}, \frac{2}{5}, \frac{5}{12}$
13. Kofi paid rent of $\mathrm{GH} \not \subset 1,800.00$ each year. If the rent is 0.3 of his annual income, find his annual income.
A. $\mathrm{GH} ¢ 600.00$
B. $\mathrm{GH} \Phi 5,400.00$
C. GH¢ $6,000.00$
D. $\mathrm{GH} \notin 18,000.00$
14. I gave a storekeeper a $\mathrm{GH} \not \subset 10.00$ note for goods I bought. He asked me for another 15 Gp for ease of change. If he then gave me 50 Gp , how much did I pay for the goods?
A. GH¢ 9.35
B. GH¢ 9.45
C. $\mathrm{GH} \not \subset 9.65$
D. GH¢ 10.65
15. Kojo can buy 15 shirts at GH¢ 4.00 each. If the price is increased to $\mathrm{GH} \not \subset 5.00$, how many shirts can he now buy?
A. 12
B. 15
C. 19
D. 20
16. A hall which is 8 m long is represented on a diagram as 4 cm long. What is the scale of the diagram?
A. 1:200
B. 1:250
C. 1:400
D. 1:800
17. Jane arrived at work at 7:55 am and left at $4: 15 \mathrm{pm}$. For how long was she at work?
A. 7 hr 20 min
B. 7 hr 45 min
C. 8 hr 20 min
D. 8 hr 40 min
18. Given that $(3.14 \times 18) \times 17.5=3.14 \times(3 p$ $\times 17.5$), find the value of p
A. 3.0
B. 5.8
C. 6.0
D. 9.0

The pie chart shows how Kwaku spends his monthly salary.

Use this information to answer Questions 19 to 21
19. Find the value of x
A. 65°
B. 75°
C. 85°
D. 100°
20. Kwaku earns GH¢ 630.00 a month. How much of this does he spend on food?
A. GH\& 140.00
B. GH $\not 157.00$
C. GH\& 210.00
D. GH¢ 350.00
21. Factorize: $x y+5 x+2 y+10$
A. $(x+5)(2 y+10)$
B. $(x+2)(y+10)$
C. $(x+5)(y+2)$
D. $(x+2)(y+5)$
22. If $x \in\{2,3,4,5\}$, find the truth set of $2 x+$ $1<8$
A. $\{2,3,4\}$
B. $\{2,3\}$
C. $\{3,4\}$
D. $\{4,5\}$
23. Solve the inequality: $7 x-(10 x+3) \geq-$ 9
A. $x \geq 2$
B. $x \leq 4$
C. $x \geq 4$
D. $x \leq 2$
24. Find the rule of the mapping:

A. $x \rightarrow 4 x-3$
B. $x \rightarrow 3-4 x$
C. $x \rightarrow 4 x+3$
D. $x \rightarrow 4 x+5$
25. Find the circumference of a circle whose area is equal to $64 \pi \mathrm{~cm}^{2}$.
A. $32 \pi \mathrm{~cm}^{2}$
B. $16 \pi \mathrm{~cm}^{2}$
C. $8 \pi \mathrm{~cm}^{2}$
D. $4 \pi \mathrm{~cm}^{2}$
26. Which of the following geometric figures is the plane shape of a cube?
A. Circle
B. Rectangle
C. Square
D. Triangle
27. How many lines of symmetry has a rectangle?
A. 4
B. 3
C. 2
D. 1
28. A rectangular box has length 20 cm , width 6 cm and height 4 cm . Find how many cubes of side 2 cm that will fit into the box.
A. 120
B. 60
C. 30
D. 15
29. The interior angle of a regular polygon is 120°. How many sides has this polygon?
A) 3
B) 4
C) 5
D) 6
30.

In the diagram above, length of $\mathrm{PS}=$ length of $S Q$ and angle $S Q R=112^{\circ}$. Find the value of x.
A. 68°
B. 56°
C. 46°
D. 44°
31. $\mathbf{X Y Z}$ is a right-angled triangle with length of sides as shown.

Which of the following equations gives the value of z^{2} ?
A. $z^{2}=\left(x^{2}+y^{2}\right)$
B. $z^{2}=(x-y)$
C. $z^{2}=\left(y^{2}-x^{2}\right)$
D. $z^{2}=\left(x^{2}-y^{2}\right)$
32. Express 7 min .30 sec . as a percentage of 1 hour.
A. 2.5%
B. 7.5%
C. 11.7%
D. 12.5%
33. The point $(4,5)$ is translated to the point $(3,1)$. What is the translation vector?
A. $\binom{-1}{4}$
B. $\binom{1}{4}$
C. $\binom{1}{-4}$
D. $\binom{-1}{-4}$
34. In the diagram below, triangle QRT is the enlargement of QST.

Which side of triangle QRT corresponds to side QT of triangle QST?
A. TS
B. TR
C. QR
D. SR

Not drawn to scale
Fig. II

In the diagrams above Fig. I is an enlargement of Fig. II.

Find the side EF of Fig. II
A. 20 cm
B. 5 cm
C. 4 cm
D. 3 cm
36. Express 4037 in standard form
A. 4.037×10^{-4}
B. 4.037×10^{-3}
C. 4.037×10^{3}
D. 4.037×10^{4}
37. Which of the following angles can be constructed by using the arcs at point C in the diagram below?

A. 30°
B. 45°
C. 60°
D. 75°
38. Given that vector $\mathbf{a}=\binom{-5}{12}$ and \mathbf{b} $=\binom{10 x}{12}$ find the value of x if $\mathbf{a}=\mathbf{b}$.
A. -2
B. $-1 / 2$
C. $1 / 2$
D. 2
39.

Nót drawn to scale

In the diagram above, the bearing of point \mathbf{B} from \mathbf{A} is
A. 340°
B. 220°
C. 140°
D. 50°
40. Ama is 9 years older than Kwame. If Kwame is 18 years old, find the ratio of the age of Kwame to that of Ama.
A. $3: 2$
B. $1: 3$
C. $2: 3$
D. $2: 1$

PB PAGEZ EXAMINATION

FREE MOCK QUESTIONS_2

MATHEMATICS Marking Scheme
OBJECTIVE TEST (40 MARKS)
PAPER ONE

1. D	6. B	11. C	16. A	21. D	26. C	31. C	36. C
2. C	7. D	12. B	17. C	22. B	27. C	32. D	37. B
3. D	8. D	13. C	18. C	23. D	28. B	33. D	38. B
4. D	9. A	14. C	19.	24. C	29. D	34. B	39. B
5. D	10. C	15. A	20. C	25. B	30. D	35. D	40. C

PAPER TWO [60 MARKS]

1. (a) $(\mathrm{m}+\mathrm{n})(2 x-\mathrm{y})-x(\mathrm{~m}+\mathrm{n})$

Method 1

$$
\begin{aligned}
& =\quad(\mathrm{m}+\mathrm{n})[2 x-\mathrm{y}-\mathrm{x}] \\
& =\quad(\mathrm{m}+\mathrm{n})(2 x-x-\mathrm{y}) \\
& =\quad(\mathrm{m}+\mathrm{n})(x-\mathrm{y})
\end{aligned}
$$

Factorizing $(m+n)$ out

NB: $(\mathbf{m}+\mathbf{n})(x-y)=(x-y)(\mathbf{m}+\mathbf{n})$

Method 2

$$
\begin{array}{lc}
& (\mathrm{m}+\mathrm{n})(2 x-\mathrm{y}) \quad-x(\mathrm{~m}+\mathrm{n}) \\
= & 2 \mathrm{~m} x-\mathrm{my}+2 \mathrm{n} x-\mathrm{ny}-\mathrm{m} x-\mathrm{n} x \\
= & 2 \mathrm{~m} x-\mathrm{m} x+2 \mathrm{n} x-\mathrm{n} x-\mathrm{my}-\mathrm{ny} \\
= & \mathrm{m} x \quad+\mathrm{n} x \quad-\mathrm{my}-\mathrm{ny} \\
= & x(\mathrm{~m}+\mathrm{n})-\mathrm{y}(\mathrm{~m}+\mathrm{n}) \\
= & \quad \underline{(\mathrm{m}+\mathrm{n})(x-\mathrm{y})}
\end{array}
$$

Expanding

Grouping like terms \& simplifying

Factorizing

Factorizing $(m+n)$ out

1 (b) (i) $\quad \mathrm{A}=\quad=\quad 2,4,6,8,10,12,14,16,18\}$

$$
\begin{aligned}
\mathrm{B} & =\{3,6,9,12,15,18\} \\
\mathrm{A} \cap \mathrm{~B} & =\{6,12,18\} \\
\mathrm{A} \cup \mathrm{~B} & =\{2,3,4,6,8,9,10,12,14,15,16,18\} \\
(\mathrm{A} \cup B)^{\prime} & =\{1,5,7,11,13,17\}
\end{aligned}
$$

1(b) (ii)

1 (c) $\quad\binom{5}{3}+2\binom{x}{y}-\binom{1}{-7}=0$
Using the horizontal (x) component, we have

$$
\begin{aligned}
& & 5+2 x-1 & =0 \\
\Rightarrow & & 2 x & =1-5 \\
\Rightarrow & & \frac{2 x}{2} & =\frac{-4}{2} \\
\Rightarrow & & & \underline{x}
\end{aligned}
$$

Solving for x

Using the vertical (y) component, we have

$$
\begin{array}{cc}
& 3+2 y-(-7)=0 \\
\Rightarrow & 3+2 y+7=0 \\
\Rightarrow & 2 y+10=0 \\
\Rightarrow & 2 y=-10 \\
\Rightarrow & y=\frac{-10}{2} \\
\Rightarrow & y=-5
\end{array}
$$

2. (a) $2,483.65+701.532+102.7$

$$
\begin{aligned}
& 2483.65 \\
& 701.532 \\
&+ 102.7 \\
& \hline 3287.882 \\
& \hline
\end{aligned}
$$

Ensure that the places of the addends are in line

$$
\approx \quad \underline{\underline{3287.9}} \quad \text { (one decimal place) }
$$

2 (b)

(i) Side AC is the hypotenuse of triangle ABC .

From the Pythagorean theorem,

$$
\begin{aligned}
& |\mathrm{AC}|^{2}=|\mathrm{AB}|^{2}+|\mathrm{BC}|^{2} \\
\Rightarrow & |\mathrm{AC}|^{2}=(3 \mathrm{~cm})^{2}+(4 \mathrm{~cm})^{2} \\
\Rightarrow & |\mathrm{AC}|^{2}=9 \mathrm{~cm}^{2}+16 \mathrm{~cm}^{2} \\
\Rightarrow & |\mathrm{AC}|^{2}=25 \mathrm{~cm}^{2} \\
\Rightarrow & |\mathrm{AC}|=\sqrt{25 \mathrm{~cm}^{2}} \\
\Rightarrow & |\mathrm{AC}|=5 \mathrm{~cm}
\end{aligned}
$$

Now, side AD is the hypotenuse of triangle ACD From the Pythagorean theorem,

$$
\begin{aligned}
|\mathrm{AD}|^{2} & =|\mathrm{AC}|^{2}+|\mathrm{CD}|^{2} \\
\Rightarrow \quad|\mathrm{AD}| & =\sqrt{(5 \mathrm{~cm})^{2}+(12 \mathrm{~cm})^{2}} \\
\Rightarrow \quad|\mathrm{AD}| & =\sqrt{169 \mathrm{~cm}^{2}} \\
\Rightarrow \quad|\mathrm{AD}| & =13 \mathrm{~cm}
\end{aligned}
$$

Hence the perimeter of ABCD

$$
\begin{aligned}
& =|\mathrm{AB}|+|B C|+|C D|+|D A| \\
& =3 \mathrm{~cm}+4 \mathrm{~cm}+12 \mathrm{~cm}+13 \mathrm{~cm} \\
& =32 \mathrm{~cm}
\end{aligned}
$$

The perimeter of $A B C D$ is 32 cm

2 (b) (ii) Area of $(\mathrm{ABCD}=\Delta \mathrm{ABC}+\triangle \mathrm{ACD})$

$$
\begin{aligned}
& =1 / 2\left(b_{1} \mathrm{~h}_{1}\right)+1 / 2\left(\mathrm{~b}_{2} \mathrm{~h}_{2}\right) \\
& =\frac{1}{2}(3 \mathrm{~cm})(4 \mathrm{~cm})+\frac{1}{2}(5 \mathrm{~cm})(12 \mathrm{~cm}) \\
& =6 \mathrm{~cm}^{2}+30 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
=36 \mathrm{~cm}^{2}
$$

The area of ABCD is $36 \mathrm{~cm}^{2}$

3. (a)

$$
\begin{aligned}
& \frac{2^{7} \times 3^{4} \times 5^{3}}{2^{3} \times 3^{2} \times 5^{2}} \\
= & \frac{2^{7}}{2^{3}} \times \frac{3^{4}}{3^{2}} \times \frac{5^{3}}{5^{2}} \\
= & 2^{4} \times 3^{2} \times 5 \\
= & 8 \times 9 \times 5 \\
= & 360 \\
= & 3.6 \times 10^{2}
\end{aligned}
$$

3 (b) Distance ridden $=x \mathrm{~km}$

$$
\begin{aligned}
& \text { Distance walked }=\frac{1}{2} \mathrm{~h} \times 6 \mathrm{~km} / \mathrm{h}=3 \mathrm{~km} \\
& \text { Total distance }=10 \mathrm{~km}
\end{aligned}
$$

Dist. ridden + dist. walked $=$ total dist.
$\Rightarrow x \mathrm{~km}+3 \mathrm{~km}=10 \mathrm{~km}$
$\Rightarrow \quad x \mathrm{~km} \quad=\quad 10 \mathrm{~km}-3 \mathrm{~km}$
$\Rightarrow \quad x \mathrm{~km} \quad=\quad 7 \mathrm{~km}$
The distance Kwame covered by bicycle is 7 km

3 (c) (i)

$$
\begin{array}{rlc}
\text { Volume } & = & \text { length } \times \text { width } \times \text { height } \\
& =22 \mathrm{~cm} \times 9 \mathrm{~cm} \times 16 \mathrm{~cm} \\
& = & \underline{3168 \mathrm{~cm}^{3}}
\end{array}
$$

Let $d=$ the depth of water in the cylinder

3 (c) (ii) Method 1 (Using calculated volume of rectangular tank)

\Rightarrow	$3168 \mathrm{~cm}^{3}$	=	$\pi r^{2} \times d$	
\Rightarrow	$3168 \mathrm{~cm}^{3}$	=	${ }^{22} / 7 \times(6 \mathrm{~cm})^{2} \times \mathrm{d}$	Substituting
\Rightarrow	$3168 \mathrm{~cm}^{3}$	=	$22 / 7 \times 36 \mathrm{~cm}^{2} \times \mathrm{d}$	
\Rightarrow	$\frac{3168 \mathrm{~cm}^{3}}{\frac{22}{7} \times 36 \mathrm{~cm}^{2}}$	=	d	Dividing both sides by $22 / 7 \times 36 \mathrm{~cm}^{2}$
\Rightarrow	$\frac{3168}{792 / 7} \mathrm{~cm}$	=	d	Simplifying
\Rightarrow	$3168 \div \frac{792}{7} \mathrm{~cm}$		d	
\Rightarrow \Rightarrow	$3168 \times \frac{7}{792} \mathrm{~cm}$	$=$	d d	You may avoid the tedious simplification here by using Method 2 below

Hence the depth of water in the cylindrical container $=28 \mathrm{~cm}$

3(c)(ii) Method 2 (Using the given dimensions of rectangular tank)

$$
\begin{array}{llll}
& \text { Vol. of water in cuboid } & =\text { Vol. of water in cylinder } & \\
\Rightarrow & l \times w \times h \text { cuboid } & =\pi r^{2} \times d \text { cylinder } & \\
& {[22 \mathrm{~cm} \times 9 \mathrm{~cm}] \times 16 \mathrm{~cm}} & =\left[{ }^{22} / 7 \times(6 \mathrm{~cm})^{2}\right] \times \mathrm{d} & \text { Substituting and solving for } d \\
\Rightarrow & {[22 \mathrm{~cm} \times 9 \mathrm{~cm}] \times 16 \mathrm{~cm}=} & \left(\frac{22}{7} \times 6 \mathrm{~cm} \times 6 \mathrm{~cm}\right) \times \mathrm{d} & \\
\Rightarrow \quad & \frac{22 \mathrm{~cm} \times 9 \mathrm{~cm} \times 16 \mathrm{~cm}}{\frac{22}{7} \times 6 \mathrm{~cm} \times 6 \mathrm{~cm}} \quad=\quad \mathrm{d} & \text { Simplifying }
\end{array}
$$

$$
\begin{array}{ll}
\Rightarrow & \frac{22 \mathrm{~cm} \times 9 \mathrm{~cm} \times 16 \mathrm{~cm} \times 7}{22 \times 6 \mathrm{~cm} \times 6 \mathrm{~cm}}=\mathrm{d} \\
\Rightarrow & \underline{28 \mathrm{~cm}}=\mathrm{d}
\end{array}
$$

\therefore The depth (d) of water in the cylindrical container $=\underline{28 \mathrm{~cm}}$.
4. (a) (i) Let length $=1$, width $=\mathrm{w}$, height $=\mathrm{h}$

Total surface area $=\quad 21 \mathrm{w}+2 \mathrm{lh}+2 \mathrm{wh}$,

$$
=(2 \times 8 \mathrm{~cm} \times 5 \mathrm{~cm})+(2 \times 8 \mathrm{~cm} \times 10 \mathrm{~cm})+(2 \times 5 \mathrm{~cm} \times 10 \mathrm{~cm})
$$

$$
=80 \mathrm{~cm}^{2}+160 \mathrm{~cm}^{2}+100 \mathrm{~cm}^{2}
$$

$$
=\quad \underline{\underline{340 \mathrm{~cm}^{2}}}
$$

(ii) Volume $=1 \times w \times h$
$=\quad 8 \mathrm{~cm} \times 5 \mathrm{~cm} \times 10 \mathrm{~cm}$
$=400 \mathrm{~cm}^{3}$
4 (b)

5. (a)

(b) (i) \quad Radius $=4.0 \mathrm{~cm}($ or 4.1 cm$)$
(ii) If $\mathrm{r}=4.0 \mathrm{~cm}$
$\mathrm{C}=2 \pi \mathrm{r}$

$$
=2 \times 3.14 \times 4 \mathrm{~cm}
$$

$=\quad \underline{\underline{5} .12 \mathrm{~cm}}$
Or if $\quad \mathrm{r}=4.1 \mathrm{~cm}$
C $=2 \times 3.14 \times 4.1 \mathrm{~cm}$
$=\quad 25.748 \mathrm{~cm}$
6. (a) $6 x y-3 y+4 x-2$
$3 y(2 x-1)+2(2 x-1)$
$(2 x-1)(3 y+2)$
(b) The length of the ladder AB forms the hypotenuse of the right-angled triangle ABP From the Pythagorean theorem,

$$
\begin{aligned}
|\mathrm{AB}|^{2} & =|\mathrm{AP}|^{2}+|\mathrm{BP}|^{2} \\
& =(6)^{2}+(8)^{2} \\
& =36+64 \\
|\mathrm{AB}|^{2} & =100 \\
\Rightarrow \quad|\mathrm{AB}| & =\sqrt{100} \\
& =\underline{10 \mathrm{~m}}
\end{aligned}
$$

The length of the ladder $A B$ is 10 m
6. (c)

Method 1
No. of bags sold in January $=\frac{2}{3} \times 1800$
$=\quad 2 \times 600$
$=\quad \underline{1200}$
No. of bags left $=1800-1200$
$=\underline{\underline{600}}$

No. of bags sold in February $=\frac{3}{4} \times 600$
$=3 \times 150$
$=\quad \underline{450}$
$\begin{aligned} \text { (i) }(\alpha) \quad \text { Fraction of bags sold in February } & =\frac{\text { No.of bags sold in February }}{\text { Total no. of bags }} \\ & =\frac{450}{1800} \\ & =\frac{\underline{1}}{\underline{4}} \\ & =\underline{\underline{1200}+450} \\ \text { (i) (} \beta \text {) Fraction of bags sold in Jan and Feb } & =\underline{1800} \\ & =\underline{\underline{11}} \\ \text { (ii) No.of bags left unsold by the end of February } & =\underline{\underline{1800}} \\ & =1650\end{aligned}$
6. (c) Method 2

$$
\begin{aligned}
\text { Fraction sold in January } & =\underline{\underline{2}} \\
\text { Fraction left } & =1-\frac{2}{3} \\
& =\frac{1}{1}-\frac{2}{3} \\
& =\frac{3-2}{3} \\
& =\frac{1}{3}
\end{aligned}
$$

(i) ($\alpha \quad$ Fraction sold in February $=\frac{3}{4}$ of fraction left

$$
\begin{aligned}
& =\frac{3}{4} \times \frac{1}{3} \\
& =\frac{1}{4} \times \frac{1}{1} \\
\text { Fraction sold in Feb. } & =\frac{1}{4}
\end{aligned}
$$

(i) (β) Fraction sold In January and February

$$
=\frac{2}{3}+\frac{1}{4}
$$

$$
\begin{aligned}
& =\frac{4(2)+3(1)}{12} \\
& =\frac{8+3}{12}=\frac{11}{12}
\end{aligned}
$$

(ii) No. of bags left unsold by end of February
$=\quad$ Fraction left unsold \times Total no. of bags

$$
\begin{aligned}
\text { But fraction left unsold } & =1-\frac{11}{12} \\
& =\frac{12}{12}-\frac{11}{12} \\
& =\frac{1}{12}
\end{aligned}
$$

Therefore No. of bags left unsold by end of February

$$
\begin{aligned}
& =\quad \frac{1}{12} \times 1800 \text { bags } \\
& =\quad 1 \times 150 \text { bags } \\
& =\quad 150 \text { bags }
\end{aligned}
$$

