SEPTEMBER 2022 MOCK MARKING SCHEME

MATHEMATICS 1

OBJECTIVE TEST ANSWERS

1.	C	{7, 13}
		. ,

2. B
$$Q \subset P$$

6. C
$$1\frac{2}{5}$$

8. D
$$\frac{5}{8}$$
, 0.62, $\frac{9}{16}$

17. D
$$\frac{5}{8}$$

23. D
$$x \le 2$$

25. D
$$3\frac{3}{4}$$

26. B
$$\frac{2}{5}$$

28. B
$$38\frac{1}{2}$$
 cm²

30. B
$$Q(-5, -4)$$

MATHEMATICS 2

PAPER 2 ANSWERS

1. (a)

$$B = \{20, 21, 22, 23, ..., 30\}$$

$$D = \{1, 3, 7, 9, 21, 63\}$$

$$\mathbf{(i)} \qquad \qquad \mathbf{B} \cap \mathbf{D} \qquad = \qquad \{21\}$$

(ii) B U D =
$$\{1, 3, 7, 9, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 63\}$$

(b) (i) Let n(U) = No. of students in the class

n(M) = No. of students that passed Maths

n(E) = No. of students that passed English

b = No. of students that passed both Maths and English

(ii) From the diagram above,

$$46 - b + b + 42 - b + 0 = 60$$

$$\Rightarrow$$
 46+0+42-b+0 = 60

$$\Rightarrow$$
 46 + 42 - b = 60

$$\Rightarrow$$
 88 - b = 60

$$\Rightarrow$$
 88 - 60 = b

$$\Rightarrow$$
 $\underline{b} = 28$

2.

(a)
$$|XY| \approx \underline{10.3 \text{ cm}}$$

(b)
$$|YA| \approx \underline{5.7 \text{ cm}}$$

3. (a) Total expenses = Income tax + property tax + repairs
=
$$(15\% \text{ of } \cancel{\epsilon}240,000) + (25\% \text{ of } \cancel{\epsilon}240,000) + \cancel{\epsilon}10,000$$

= $\left(\frac{15}{100} \times \cancel{\epsilon}240,000\right) + \left(\frac{25}{100} \times \cancel{\epsilon}240,000\right) + \cancel{\epsilon}10,000$
= $\cancel{\epsilon}36,000 + \cancel{\epsilon}60,000 + \cancel{\epsilon}10,000$
= $\cancel{\epsilon}106,000$

 \Rightarrow The landlady's total expenses = $\cancel{c}106,000.00$

(b) The remainder = Total Amount - Expenses
=
$$$\xi^2 240,000.00 - $\xi^2 106,000.00$= $$\xi^2 134,000.00$$$$

(c) Percentage of the rent spent on repairs

$$= \frac{\text{Amount on repairs}}{\text{Total income from rent}} \times 100\%$$

$$= \frac{10,000}{240,000} \times 100\%$$

$$= \frac{25}{6}\%$$

$$= \frac{4\frac{1}{6}\%}{} \quad \text{or} \quad \approx \quad \underline{4.167\%}$$

4. Approach 1 (By Inspection / Construction)

(ii) Approach 2 (The rule / formula)

Reflecting (x, y) in the y-axis

$$\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} -x \\ y \end{pmatrix} \\
OA_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad \therefore A_1(-1,2) \\
OB_1 \begin{pmatrix} 4 \\ 2 \end{pmatrix} \rightarrow OB_1 \begin{pmatrix} -4 \\ 2 \end{pmatrix}, \quad \therefore B_1(-4,2) \\
OC_1 \begin{pmatrix} 4 \\ 5 \end{pmatrix} \rightarrow OC_1 \begin{pmatrix} -4 \\ 5 \end{pmatrix}, \quad \therefore C_1(-4,5) \\
OD_1 \begin{pmatrix} 1 \\ 5 \end{pmatrix} \rightarrow OD_1 \begin{pmatrix} -1 \\ 5 \end{pmatrix}, \quad \therefore D_1(-1,5)$$

 \therefore Plot and join A₁(-1,2), B₁(-4,2), C₁(-4,5) and D(-1,5) as the image of ABCD under a reflection in the y axis.

(iii) Enlargement from (0,0) by scale factor k

$$\begin{pmatrix} x \\ y \end{pmatrix} \to k \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} kx \\ ky \end{pmatrix}$$

$$OA\begin{pmatrix} 1 \\ 2 \end{pmatrix} \to OA_2 \begin{pmatrix} -1 \times 1 \\ -1 \times 2 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}, \quad \therefore A_2(-1, -2)$$

$$OB\begin{pmatrix} 4 \\ 2 \end{pmatrix} \to OB_2 \begin{pmatrix} -1 \times 4 \\ -1 \times 2 \end{pmatrix} = \begin{pmatrix} -4 \\ -2 \end{pmatrix}, \quad \therefore B_2(-4, -2)$$

$$OC\begin{pmatrix} 4 \\ 5 \end{pmatrix} \to OC_2 \begin{pmatrix} -1 \times 4 \\ -1 \times 5 \end{pmatrix} = \begin{pmatrix} -4 \\ -5 \end{pmatrix}, \quad \therefore C_2(-4, -5)$$

$$OD\begin{pmatrix} 1 \\ 5 \end{pmatrix} \to OD_2 \begin{pmatrix} -1 \times 1 \\ -1 \times 5 \end{pmatrix} = \begin{pmatrix} -1 \\ -5 \end{pmatrix}, \quad \therefore D_2(-1, -5)$$

 $\underline{\cdot\cdot}$ Plot and join $A_2(-1,-2)$, $B_2(-4,-2)$, $C_2(-4,-5)$ and $D_2(-1,-5)$ as the image of triangle ABCD under an enlargement by scale factor -1 from the origin (as shown above)

(iv) The single transformation that maps $A_2B_2C_2$ D_2 onto $A_1B_1C_1D_1$ is reflection in the x-axis

5. (i) Total no. of workers
$$= 3 + 7 + 8 + 4 + 5 + 3$$

Age in years	No. of workers	
(x)	(f)	f x
19	3	57
24	7	168
29	8	232
34	4	136
39	5	195
44	3	132
	$\Sigma f = 30$	$\Sigma fx = 920$

The mean age
$$= \frac{\sum f x}{\sum f} = \frac{920}{30}$$

$$= 30\frac{2}{3} years \approx 30.67 years$$

$$I = \frac{P \times T \times R}{100},$$

making T the subject

L

$$\Rightarrow 100 I = P T R$$

Cross-multiplying

$$\Rightarrow \quad \frac{100 \, I}{P \, R} = \frac{P \, T \, R}{P \, R}$$

$$\Rightarrow \quad \frac{100 \, I}{P \, R} \ = \quad T$$

$$\Rightarrow T = \frac{100 I}{P R}$$

(ii)
$$T = \frac{100 I}{PR}$$

$$= \frac{100 \times 40,000}{64,000 \times 25}$$

$$= \frac{5}{2}$$

$$= \frac{2 \frac{1}{2} \text{ years}}{100 \times 40,000}$$

6. (a) Volume of cylinder = Area of base \times height

Approach 1

(Substitution first)

$$V = \pi r^{2} \times h$$

$$\Rightarrow 220 \text{cm}^{3} = \frac{22}{7} \times (2.5 \text{cm})^{2} \times h$$

$$\Rightarrow 220 \text{cm}^{3} = \frac{22}{7} \times 2.5 \text{cm} \times 2.5 \text{cm} \times h$$

$$\Rightarrow \frac{220 \text{cm}^{3} \times 7}{22 \times 2.5 \text{cm} \times 2.5 \text{cm}} = h$$

$$\Rightarrow \frac{10 \text{cm}^{3} \times 7}{2.5 \text{cm} \times 2.5 \text{cm}} = h$$

$$\Rightarrow \frac{70 \text{ cm}^{3}}{6.25 \text{ cm}^{2}} = h$$

$$\Rightarrow \frac{70 \text{ cm}^{3}}{6\frac{1}{4} \text{ cm}^{2}} = h$$

$$\Rightarrow \frac{4 \times 70 \text{ cm}^{3}}{25 \text{ cm}^{2}} = h$$

$$\Rightarrow \frac{4 \times 14 \ cm^3}{5 \ cm^2} = h$$

$$\Rightarrow \frac{56 \text{ cm}^3}{5 \text{ cm}^2} = h$$

$$\Rightarrow 11\frac{1}{5} cm = 11.2 cm = h$$

 \Rightarrow The height of the cylinder = $11^{1}/_{5}$ cm or 11.2cm

Alternatively, from the 5th step

$$\frac{70 \text{ cm}^3}{6.25 \text{ cm}^2} = h$$

$$\Rightarrow \frac{7000 \text{ cm}^3}{625 \text{ cm}^2} = h$$

$$\Rightarrow \frac{56 \text{ cm}^3}{5 \text{ cm}^2} = h$$

$$\Rightarrow 11\frac{1}{5} cm = 11.2 cm = h$$

 \Rightarrow The height of the cylinder = $\frac{11^{1}}{5}$ cm or 11.2cm

6. (a) Approach 2 (making h the subject first)

$$V = \pi r^2 \times h$$

$$\Rightarrow \frac{V}{\pi r^2} = h$$

$$\Rightarrow \frac{220 \, cm^3}{\frac{22}{7} \times (2.5 \, cm)^2} = h$$

$$\Rightarrow \frac{7 \times 220 \text{ cm}^3}{22 \times 2.5 \text{ cm} \times 2.5 \text{ cm}} = h$$

$$\Rightarrow \frac{7 \times 10 \ cm^3}{2.5 \ cm \times 2.5 \ cm} = h$$

$$\Rightarrow \frac{70 \text{ cm}^3}{6.25 \text{ cm}^2} = h$$

$$\Rightarrow \frac{7000 \text{ cm}^3}{625 \text{ cm}^2} = h$$

$$\Rightarrow \frac{56 \text{ cm}^3}{5 \text{ cm}^2} = h$$

$$\Rightarrow$$
 11 $\frac{1}{5}$ cm = h or

$$\Rightarrow$$
 11.2 cm = h

⇒ The height of the cylinder = $\frac{11^{1}}{5}$ cm or 11.2cm

(b) METHOD 1 (Using relation between exterior angle and no. of sides)

Since interior angle = 140° ,

$$\Rightarrow$$
 Exterior angle = $180^{\circ} - 140^{\circ} = 40^{\circ}$

Therefore Number of sides (n) =
$$\frac{360^{\circ}}{40^{\circ}}$$

= <u>9 sides.</u>

(b) METHOD 2 (Using relation between interior angle and no. of sides)

For a regular polygon, each interior angle = $\frac{180^{0}(n-2)}{n}$, where n = no. of sides

$$\Rightarrow 140^{\circ} = \frac{180^{0}(n-2)}{n}$$

$$\Rightarrow$$
 140° n = 180° (n – 2)

$$\Rightarrow$$
 140° n = 180°n - 360°

$$\Rightarrow 360^{\circ} = 180^{\circ} \text{ n} - 140^{\circ} \text{n}$$

$$\Rightarrow$$
 360° = 40° n

$$\Rightarrow \frac{360^{\circ}}{40^{0}} = n$$

$$\Rightarrow$$
 $\underline{9}$ = n

$$\therefore$$
 The polygon has $\underline{9 \text{ sides}}$