[3 marks]

PAPER 2 Essav [60 marks]

Answer eight questions in all; five questions from Part I and three questions from Part II

PART 1 [15 marks]

Answer any five questions from this part.

All questions carry equal marks.

1.	(a)	State the unit of:		
		(i) inductance;		
		(ii) universal gravitational constant. G		
	(b)	A student expressed momentum P of a body as $P = \frac{mv^2t}{d}$, where $m = \frac{mv^2t}{d}$	mass;	
		v = velocity, $t = time$; $d = distance$		
		Use dimensional analysis to show that the equation is correct.	[3 marks]	
2.	State	three evidences that support the particle nature of matter.	[3 marks]	
3.	A geo	stationary satellite is moving in a circular orbit at a height of 3000 km from		
	the ea	orth's surface. Calculate its speed [Radius of the earth, R = 6400km]	[3 marks]	
4.	(a)	What does the area under a stress-strain curve represent?		
	(b)	State two examples of projectile in sports.		
			[3 marks]	
5.	Expla	in why the Young's modulus of aluminium is greater than that of rubber.	[3 marks]	
6.	(a)	State the mathematical relationship between the maximum height H reached by an oblique projectile and its time of flight F .		
	(6)	A body is projected with a speed of 8 m s ⁻¹ to attain a maximum range. Calculate its velocity at the highest point, $[g = 10 \text{ m s}^{-2}]$		
			[3 marks]	
7.	(a)	State the principle on which fibre optics is based;		
	(b)	State the two main parts of an optical fibre.	4	

INSCRIPTION AND PERSONS IN

Answer three questions from this part. All questions carry equal marks.

- 8. (a) (i) What is natural frequency of an oscillating system?
 - (ii) Two identical springs each of force constant 20 N m⁻¹ are attached to the opposite side of a block of mass 400 g resting on a smooth surface. The free ends of the springs are fixed to a rigid support. If the mass is displaced from rest to execute simple harmonic motion, calculate the period of oscillation of the block.

[5 marks]

- (b) (i) Draw a block and tackle system of a pulley with a velocity ratio of 6. In the diagram indicate clearly the direction of the load and effort.
 - (ii) A 75 kg box is steadily raised through a vertical distance of 450 mm using a block -and - tackle pulley system with a velocity ratio of 8. If the effort is 80N, calculate the:
 - (α) distance moved by the effort.
 - (β) work done by the effort in lifting the load.

[6 marks]

- (c) A uniform metre rule is pivoted at its center. Three loads, 5.0 N, P N, and 7.0 N are positioned on the rule at the 30.0 cm, 40.0 cm and 80.0 cm marks respectively.
 - Draw a force-diagram illustrating the arrangement.
 - (ii) Calculate P if the metre rule is in equilibrium.

[4 marks]

- 9. (a) (i) Define relative density.
 - (ii) A bowl of cross-sectional area 0.38 m² is filled with ice to a depth of 14 mm in a refrigerator. Calculate the mass of ice in the bowl. [density of ice = 917 kg/m³]

[4 marks]

- (b) (i) Define specific latent heat of fusion of ice.
 - (ii) State two factors that affect the specific latent heat of fusion of a liquid

[4 marks]

- (c) (i) State three advantages of a thermocouple over liquid-in-glass thermometer
 - (ii) In an experiment to determine the upper fixed point of a thermometer using the hypsometer, state one function each of a
 - (α) hypsometer jacket;
 - (β) manometer.

in the experiment.

(iii) The electrical resistances of the elements in a platinum resistance thermometer at 0 °C, room temperature and 100 °C are 53.000 Ω , 60.310 Ω and 82.412 Ω respectively. Determine the room temperature.

[7 marks]

10	(11)	Stat	te three differences between umbra and penumbra regions of a shadow.	[3 marks]
	(6)	Lise	a ray diagram in show how parallel rays of light close to the principal	
			are reflected by	
		(i) (ii)	concave mirror;	
		1777	CONVEX HILITOP	
				[4 marks]
	(c)	Exp	lain why a hypermetropic person would not require the use of a	
		corn	ective lens when viewing distant objects.	The sale
			and the thing distant dejects	[2 marks]
	(d)	A lu	minous object and a screen are kept at a distance 100 cm apart.	
		A co	nivex mirror between the object and screen forms real images at two	
		diffe	rent positions separated by 20 cm. Calculate the power of the lens.	
			the power of the lens.	[6 marks]
11.	(a)	(i)	Define comparison of	
		(iii)	Define capacitance of a capacitor.	
		100	State three factors on which the magnitude of charges deposited on	
			a parallel plate capacitor depends.	
				[5 marks]
	(b)	Draw	the electrical electrical electrical	District Modern A.
		(i)	the electrical circuit symbol for each of the circuit elements below transformer;	
		(0)	diode:	
		(iii)	galvanometer.	
		(iv)	fuse.	
		44.7	ruse,	
				[2 marks]
	14.47			1+ marks1
	(c)	(i)	List four uses of X-rays.	
		(0)	In an X-ray tube, an electron is	
			tungsten target biased at a potential of 42 kV. Calculate the kinetic	
			energy of the electron.	
		(iii)	Define the binding energy of a nucleus	
			and the graph of a nucleus	
	1400			[8 marks]
12	(a)	(i)	Define isotopes of an element.	To mineral
		(9)	Hydrogen has three isotoon at	
			of the nucles of each and with the specific name and symbol	
			e with the distriction	
	(1)	State s	State specifically what determines the:	
		60	sinches properties of an atom;	[5 marks]
		(0)	chemical property	
			chemical properties of an atom;	
				Tab
				[2 marks]

(c)	Using the Bohr's model of atom, show that the total energy, E of an electron
	of elementary charge, e at a distance . r. from the nucleus in a hydrogen atom is given by

$$E = \frac{-e^2}{8\pi\epsilon_0 r}$$

Where ϵ_0 is the permittivity of free space.

[3 marks]

- (d) A stationary nucleus emits a packet of an electromagnetic radiation of energy 6.2 eV. Calculate the:
 - wavelength of the emitted radiation;
 - (ii) momentum of the photons.

$$[h = 6.6 \times 10^{-34}]$$
 s, $c = 3.0 \times 10^{8}]$ m s⁻¹, $1]$ eV = $1.6 \times 10^{-19}]$

[5 marks]

END OF ESSAY TEST

3
*